ethanol) gave a peak of 280 m μ typical for indoles and it did not change after acidification. The nmr spectrum contained five peaks and was interpreted after integration as representative of eight aromatic hydrogens (τ 1.0-3.0), two pyrrole N-H, two $N-NH_2$, four CH_2 , and two indole-2 hydrogens.

2-Hydrazino-8-quinolinol and Derivatives¹

TERRY RUDOLPH, F. PRZYSTAL, AND J. P. PHILLIPS

Department of Chemistry, University of Louisville, Louisville, Kentucky

Received March 31, 1967

Hydrazones of carbonyl compounds and 2-hydrazino- and 2-(1-methylhydrazino)-8-quinolinols were prepared for antitumor tests. Those hydrazones from formyl-8-quinolinols might be of further interest as bifunctional chelating agents.^{2,3}

2-(1-Methylhydrazino)-8-quinolinol.-2-Chloro-8-quinolinol (1 g) and 0.39 g of methylhydrazine in 1-propanol as solvent were refluxed 24 hr. Evaporation of solvent, addition of 50 ml of water, and neutralization with K₂CO₃ precipitated the product, mp 106° after recrystallization from ligroin (80% yield). The ultraviolet spectra showed λ_{max} [mu (log ϵ)]: EtOH, 250 s (4.27), 269 (4.52), 351 (3.56); 0.1 N HCl, 244 (4.23), 269 (4.48), 312 (3.48), 351 (2.71), 0.1 N HCl, 244 (4.23), 269 (4.48), 312 (3.48), 351 (3.71); 0.1 N NaOH, 279 (4.56), 318 s (3.18), 360 s (3.69).

Anal. Calcd for $C_{10}H_{12}N_{3}O$: C, 63.48; H, 5.80; N, 22.19. Found: C, 63.49; H, 5.70; N, 22.12.

Preparation of Hydrazones .--- Equimolar mounts of the hydrazine and aldehyde or ketone were refl.xed in ethauol for 0.5-5 hr to precipitate the hydrazones, generally yellow solids. Aldehydes reacted more quickly than ketones. Filtration of the products and recrystallization, generally from benzene, gave 80-95% yields of the compounds listed in Table I. Absorption spectra of some of these hydrazones were determined as follows for the carbonyl compound: λ_{\max}^{EtOH} [m μ (log ϵ)]: 7-formyl-8-quinolinol, 249 (4.33), 290 s (4.27), 306 (4.40), 381 (4.37), 436 (3.69); 5-acetyl-8-quinolinol, 243 (4.51), 289 (4.46), 359 (4.12): 2-formylpyridine, 238 (4.19), 264 (4.17), 274 s (4.12), 318 s (4.34), 352 (4.45), 439 s (3.30).

TUDDE I	1	LABLE	I
---------	---	-------	---

HYDRAZONES FROM 2-HYDRAZINO-8-QUINOLINOL AND CARBONYL COMPOUNDS

			% carbon		~∽% hydrogen-		% nitrogen	
Carbonyl compd	Mp, $^{\circ}C^{a}$	Formula	Caled	Found	Calcel	Found	Caled	Found
5-Acetyl-8-quinolinol	218	$\mathrm{C}_{20}\mathrm{H}_{16}\mathrm{N}_4\mathrm{O}_2$	69.75	69.60	4.68	4.75	16.26	16.10
5-Acetyl-2-methyl-8-quinolinol	207	$C_{21}H_{18}N_4O_2$	70.38	70.45	5.06	5.20	15.63	15.83
4-Formyl-8-quinolinol	292	$C_{19}H_{14}N_4O_2$	69.93	69.24	4.32	4.40	15.94	16.15
5-Formyl-2-methyl-8-quinoliuol	233	$C_{20}H_{16}N_4O_2$	69.75	69.57	4.68	4.84	16.26	16.11
7-Formyl-8-quinolinol	289	$C_{19}H_{14}N_4O_2$	69.93	70.08	4.32	4.52	15.94	16.08
7-Formyl-2-methyl-8-quinolinol	277	$C_{20}H_{16}N_4O_2$	69.75	69.53	4.68	4.83	16.26	16.14
7-Formyl-5-methyl-8-quinolinol	268	$C_{20}H_{16}N_4O_2$	69.75	69.92	4.68	4.91	16.26	16.09
Salicylaldehyde	239	$C_{16}H_{13}N_3O_2$	68.81	68.43	4.69	4.75	15.04	14.77
p-Dimethylaminobenzaldehyde	239	$C_{18}H_{18}N_4O$	70.58	70.30	5.92	6.14	18.28	17.98
Pentafluorobenzaldehyde	254	$\mathrm{C}_{13}\mathrm{H}_{18}\mathrm{F}_{5}\mathrm{N}_{3}\mathrm{O}$	54.40	54.23	2.28	2.17	11.89	11.79
Phthalaldehydic acid	225	$C_{17}H_{13}N_3O_3$	66.45	66.64	4.26	4.46	13.67	13.47
2-Formylpyridine	214	$C_{15}H_{12}N_4O$	68.17	68.19	4.57	4.66	21.19	21.32
3-Formylpyridinium methiodide	231	$C_{16}H_{13}IN_4O$					13.79	14.60
4-Antipyrinecarboxaldehyde	248	$C_{21}H_{19}N_{5}O$	67.55	67.33	5.13	5.17	18.74	18.53
Salicylaldehyde"	206	$\mathrm{C}_{17}\mathrm{H}_{15}\mathrm{N}_{3}\mathrm{O}_{2}$	69.62	69.90	5.15	5.30	14.32	13.96
" Imposed of a 1 2º source b L	Inducation of 9	(1 motherlbridge as						

" Upper end of a 1-2° range. b Hydrazone of 2-(1-methylhydrazino)-8-quinolinol.

Experimental Section⁴

2,8-Quinolinediol⁵ was to sylated and chlorinated with PCl_{i} -POCl₃ in agreement with the literature,⁶ although final hydrolysis with alkali to 2-chloro-8-quinolinol gave a product of substantially higher melting point (83-84°) than reported.

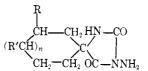
2-Hydrazino-8-quinolinol.-2-Chloro-8-quinolinol (5 g) was refluxed in 20 ml of 40% hydrazine for 4 hr. Solvent was removed under vacuum and 15 ml of water was added to precipitate the product. Recrystallization from 95% ethanol yielded a tan solid, mp 177-178° (81% yield). Anal. Calcd for C₉H_yN₃O: C, 61.70; H, 5.17; N, 23.97.

Found: C, 61.87; H, 5.09; N, 23.84.

Although reasonably stable as the solid, the hydrazine in solu-tion decomposed in a few hours. The ultraviolet spectra in the unique solution is a new norms. The unique object a matrix various solution is showed λ_{max} (m μ (log ϵ)]: EtOH, 245 (4.27), 263 (4.46), 280 s (4.04): 0.1 N HCl, 240 (4.12), 264 (4.40), 304 (3.87), 340 s (3.52): 0.1 N NaOH, 252 (4.36), 274 s (4.02), 330 (3.46), 356 s (3.41). The infrared spectra (KBr) showed bands at 3345, 3330, 1520, 1240, 820, and 738 cm⁻¹ (strongest bands).

(3) S. M. Atlas and H. F. Mark, Angew. Chem., 72, 249 (1960). (4) Ultraviolet spectra were recorded on a Cary Model 14 spectrophotom-

eter and infrared spectra on a Perkin-Elmer 337. (5) J. P. Phillips, E. M. Barrall, and R. Breese, Trans. Kentucky Acad.


3-Aminospirohydantoins

RICHARD A. WILDONGER¹ AND M. B. WINSTEAD

Department of Chemistry, Bucknell University, Lewisburg, Pennsylvania 17837

Received May 10, 1967

Some 3-animo-5,5-disubstituted hydantoins have a pronounced diuretic effect.² Such hydantoins have been prepared from the dihydrazide of α -substituted glycine-N-carboxylic acids,²⁻⁵ and

I,
$$n = 0$$
; $R = H$
II, $n = 1$; R , $R' = H$
III, $n = 1$; R , $R' = H$
III, $n = 2$; R , $R' = H$
V, $n = 1$; $R = CH_3$; $R' = H$
III, $n = 2$; R , $R' = H$
VI, $n = 1$; $R = H$; $R' = CH_3$

(1) National Science Foundation Undergraduate Research Participant, summer 1965.

(4) K. Schlögl, J. Derkosch, and E. Wawersich, Monatsh., 85, 607 (1954).

⁽¹⁾ This work was supported by a grant from the U. S. Public Health Service (CA 07403).

⁽²⁾ J. P. Phillips and J. T. Leach, Anal. Chim. Acta, 26, 572 (1962).

S(i., 17, 138 (1956); cf. also K. Ramajak and U. R. Srinvason, Proc. Indian Acad. Sci., A55, 360 (1962).

⁽⁶⁾ M. Hamana and K. Funakashi, Yakagaku Zasshi, 84, 28 (1964); Chem. Abstr., 61, 3068 (1964).

⁽²⁾ W. Taub, U. S. Patent 2.767,193 (1956); Chem. Abstr., 51, 5841 (1957).

⁽³⁾ K. Schlögl, F. Wessely, O. Kraupp, and H. Storman, J. Med. Pharm. Chem., 4, 231 (1961).